
Improving Model Based Testing Using Event
Consideration For Various Designs Concepts

Nidhi Pare, Prof. Piyush Soni

Department of Computer Science and Engineering
Sanghavi Institute of Management & Science Indore(M.P)-452001 , India

Abstract— Software Testing is a major and complex process
in software development life cycle. Lots of test cases may be
produced to ensure the validity of work, for reduction in test
cases, we must focus on its problems. Automation of this test
case generation may lead to overcome the above problems
slightly and also reduces the human effort in other ways it also
helps in detecting the human intended errors and logical
errors as well.
But automation of testing will not be that much productive in
terms of time consuming and cost, if we have to wait till the
end of the SDLC stage i.e. if we follow the white box testing
methodology of testing. we have to go for that part of the code
and design document as well, If any errors will be detected in
this stage, So we are trying to focus our study on Model Based
testing(MBT) approach for both test case generation and test
case optimization to achieve some of the goal.
The Main goal of this research is to an improved model based
testing tool using event consideration for various designs
concepts that can help to provide assurances of reduced
overhead of testing. Some techniques for providing such
assurances have been developed already, but no single
technique has provided a complete solution to the problem.
Thus, this thesis will explore the effectiveness of combining
two such techniques (Unified Modelling & Combinatorial
Testing) into a single tool. The more general purpose of this
research is to improve the available methods of software
testing. So our work suggests a novel event model based testing
mechanism using certain design primitives. The approach
aims towards making the efforts reduced for testers end.
Testing always works with the later phases of the SDLC which
leads towards delayed faults and bug detection.

Keywords— Software ,Testing, Model Based
Testing(MBT),Test Cases, Unified Modelling &
Combinatorial Testing, Software development life
cycle(SDLC).

I. INTRODUCTION
 Software is everywhere. An average company

spends about 4 to 5 percent of its revenue on Information
Technology (IT), whereas companies which are highly IT
dependent, such as finance and telecommunications are
spending more than 10 percent on it. In other words, IT
sector has now one of the largest corporate expenses,
outside employee costs. A lot of that money goes into
hardware and software upgrades, software license fees, but
a big chunk is for new software projects meant to create a
better future for an organization and its customers. Software
projects are inherently complex, risky and require careful
planning. Proper planning ensures that a project doesn't fail,
while at the same time, customers get a clear definition of
the project, know the project status and have a ready access

to project deliverables at any point of time. Most recent
surveys have shown that inadequate planning and
specifications, ill defined requirements, poor process of
requirement analysis and testing of the system, short
comings of metrics and measures to compute project’s
sheer size and complexity level, overall lead to numerous
change requests, delays, significant added costs and
increase in the possibility of errors. Over 41% of the IT
development budget for software, staff and external
professional services is consumed by poor requirements at
an average, where the company is using average analysts.
Sloppy development practices are also a rich source of
failure and they can cause errors at any stage of an IT
project. Moreover, the costs of errors that are introduced
during requirements phase and fixed later in the Software
Development Life Cycle (SDLC) increase exponentially.

II. BACKGROUND

 Software Testing
Software testing is the process of exercising a program

with well designed input data with the intent of watching
disappointments. As it were, Testing is the process of
executing a program with the expectation of discovering
errors [1]. Testing distinguishes faults, whose evacuation
builds the software quality by expanding the software
potential reliability. Testing additionally measures the
software quality as far as its ability for accomplishing
correctness, reliability, usability, maintainability, reusability
and testability. The various Objectives of testing are as
follows:
 Testing should also aim at suggesting changes or

modifications if required, thus adding value to the entire
process.

 The mail goals is to design and creates tests that
systematically uncover different classes of errors and do
so with a minimum amount of time and effort.

 Performance requirements are required as it specified in
specification document.

 Software reliability and software quality based on the
data collected during testing.

The various advantages of testing are as follows:
 Increasing accountability and Control
 Cost reduction
 Time reduction
 Defect reduction
 Productivity enhancements of the Software developers

 Test case generation from design specifications
has the added advantage of allowing test cases to be

Nidhi Pare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4718-4723

www.ijcsit.com 4718

available early in the software development cycle, thereby
making test planning more effective [2].
 Importance of Model Based Testing (MBT)
 Testing methodologies which uses model is called
model based testing (MBT). Model based testing (MBT)
refers to the type of process that focuses on deriving a test
model using different types of formal ones, then converting
this test model into a concrete set of test cases [5]. Models
are the intermediate artifacts between requirement
specification and final code. Models preserve the essential
information from the requirement, and are the basis for
implementation. Instrumentation of models into testing
process is the prime subject of concern of our thesis.
Development of unified modelling language (UML) has
helped a lot to visualize/realize the software development
process. At the earliest stage of software development life
cycle (SDLC), no one including user and developer can see
the software; only at the final stage of the product
development it is possible. Any errors/problems found out
at the final stage, it incurs a lot of cost and time to rectify,
which is very much crucial in IT industry.
 UML is the modelling language, which supports
object-oriented features at the core. In the last few years,
object-oriented analysis and design (OOAD) has come into
existence, it has found widespread acceptance in the
industry as well as in academics. We concentrate here on
widely accepted practices based on the use of the Unified
Modelling Language (UML) to support an object-oriented
development process [6]. The main reason for the
popularity of OOAD is that it holds the following promises:
• Code and design reuse
• Increased productivity
• Ease of testing and maintenance
• Better code and design understanding ability
 UML accomplish the visualization of software at
early stage of SDLC, which helps in many ways like
confidence of both developer and the end user on the
system, earlier error detection through proper analysis of
design and etc. UML also helps in making the proper
documentation of the software and so maintains the
consistency in between the specification and design
document. The key advantage of this technique is that the
test generation can systematically derive all combination of
tests associated with the requirements represented in the
model to automate both the test design and test execution
process.
 Consequences of Poor Testing
According to Gartner Research, “The lack of testing and
Quality Assurance (QA) standards, as well as a lack of
consistency, often lead to software failure and business
disruption, which can be costly.” Results of a survey
conducted in June 2010 have also shown that majority of
software bugs are attributed to poor testing procedures or
infrastructure limitations, rather than design problems. A
report that has cited six common failures of IT projects has
shown that poor testing and absence of proper change
management are two main reasons of software failure.
 Event Driven Testing- new approach
Events have also played a very important role to model
object interaction, develop a metric suite for domain

modelling and for analogical reuse of structural and
behavioural aspects of event-based object-oriented domain
models. Events are modeled in terms of object-oriented
structures, like entities and as four different events in UML
language. Events are also used to model information
structures and related activities in information systems and
for modelling static and dynamic aspects of Information
and Communication Systems.

III. LITERATURE REVIEW
 Software testing relates to the process of
finding defects and ensuring that particular software of
interest meets its specification. One of the key activities
within software testing is on the test case design. Over the
years, many test case design strategies have been developed
in the literature including that of combinatorial testing,
boundary values, equivalence partitioning, decision tables,
robustness consideration and in addition cost and effect
graphing. Although helpful, these strategies don't
sufficiently cater for bugs because of interaction. Tending
to the aforementioned issue, numerous researches into
interaction based strategies, called t-way strategies (where t
represents interaction strength), have started to develop in
the literature. Model based testing (MBT) is one of the most
important testing strategy from which early test case design
is possible. MBT uses UML models which are widely used
to describe analysis and design specifications of software
development. UML diagrams describe the realization of the
operation in design phase and also support description of
parallel activities and synchronization aspects involved in
different activities perfectly.
 The paper [7] proposes a novel method to
automatically generate test cases based on UML Class
diagrams .In this paper author gives a procedure to extract
data from UML class diagram & mapped it to genetic
algorithms for combinatorial outputs. Then it generates a
tree structure which applies the value is to depth first search
to generate all possible valid test cases. Efficiency of test
cases can be analyzed with help of mutation testing. It has
four step procedure tree formation, new trees formation, test
cases generation & test cases evaluation. From the proposed
approach of specification-based testing the complexity is
reduced too much extent. It also uses information derived
from a specification to assist testing as well as to develop
program.
 This paper [8] explores different approaches that
had emerged during the past decade regarding the
generation of test cases and test data from different models
as an emerging type of model based testing. It gives the
brief comparison for different techniques. Unified
Modelling Language UML models took the greatest share
from among those models. All the techniques first
categorize the UML model in three basic types of diagram
behavioral, interactional, structural diagrams. After the
categorization of UML diagrams author yields to a
categorization of the test cases generation techniques
according to the diagram(s) being used. Thus paper mainly
focuses on test data extraction technique based on meta-
heuristic search phenomenon’s. Techniques such as genetic
algorithms, behavioral regression testing (BERT),

Nidhi Pare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4718-4723

www.ijcsit.com 4719

metamorphic & extended finite state machine (EFSM) can
be used for optimizing the test case generation complexity.
 In this scheme of scenario-based testing [9], test
scenarios are used for generating test cases, test drivers etc.
In this paper author generate test scenarios from sequence
& class diagrams, which achieve test adequacy criteria
perfectly which achieves maximum path coverage criteria.
Author proposes an approach TC-ASEC to generate test
cases from design models using sequence diagram and class
diagram. After that we analyse the sequence diagram to find
the interaction categories and then use the class diagrams to
find the settings categories. When all the scenarios is
generated they uses category partitioning method to analyse
functional requirements & divide the in various functional
units. For each defined functional unit, conditions in the
environment (system characteristic of a certain functional
unit) and the parameters (explicit input of the same unit)
relevant for testing must be found. Further test cases are
then derived by finding significant values of environment
conditions and parameters. Moreover the overall approach
is not fully automated. Another automated tool can be
developed for the proposed approach. The ultimate goal
will be to address testability, coverage criteria and
automation anomalies, in a way to fully support system
testing activities.
 In this paper a new approach is proposed for
combinatorial testing by applying test prioritization in
event-driven software (EDS) [10]. All EDS take sequences
of events (e.g., messages, mouse-clicks) as input, change
their state, and produce an output (e.g., events, system calls,
text messages). An additional criterion is developed to
prioritize GUI and web-based programs known as
prioritizing function (PF). The PF takes as input a set of test
cases to be ordered, and returns a sequence that is ordered
by the prioritization criterion & consider it as parameter. It
also uses a function (called Order Suite) which selects a test
case that covers the maximum number of criteria elements
(e.g., windows, parameters) not yet covered by already-
selected test cases. The function iterates until all test cases
have been ordered. In half of these experiments, event
interaction- based prioritization results in the fastest fault
detection density (FDD), where FDD is a measure of the
number of faults that each test identifies on average.
 It is the model based test suite generation process
which proposes an integrated approach to generate test
cases from UML sequence and activity diagrams [11]. This
approach transforms these UML diagrams into intermediate
representation message flow graph (MFG), after that an
algorithm is used to generate test scenarios from the
constructed graph. Now, the necessary information for test
case generation, such as method-activity sequence diagrams,
associated objects in the current context, and constraint
conditions are extracted from test scenario. The test
sequences are a set of theoretical paths starting from
initialization to end, while taking conditions (pre-condition
and post-condition) into consideration. Each generated test
sequence corresponds to a particular scenario of the
considered use case of the system. The third phase is to
generate test case from the generated sequences satisfying
the message-activity path test adequacy criteria. This

approach reduces the number of test cases and still achieves
adequate test coverage of the system. Now, achieving
message-activity path coverage and category partitioning
method for each predicate conditions found in the specific
path of the design model.
 This paper [12] presents a technique that enhances
the integration testing of classes by accounting for all
possible states of interacting objects. The proposed
approach SATEC (State Activity Test Case generation) is
categorized in four parts: SAD generation, basis path
generation (using coverage criteria), test scenario
generation, test case generation. In SAD (state-activity-
diagram), the control flow information during the execution
of a use case is shown through a combination of state
transitions and activities. It is derived by synthesizing UML
state chart diagrams of different objects involved in a
particular use case with an activity diagram. The states are
extracted from the state chart diagrams and control flow is
extracted from the activity diagram. The purpose is to
handle concurrent execution of the code and some new
types of nodes have been introduced. Several faults such as
incorrect actions to an event, correct event passed to a
wrong object or incorrect events passed to the right object
in its correct state, incorrect method invocation in an
activity in the system, sneak transitions, incorrect or
missing output, etc. may occur in an operation of the
process. The results to an event depends upon the
corresponding object’s state. A test set is therefore
necessary to detect faults if any when an object invokes a
method of another object and whether the right sequence of
states and activities is followed to accomplish an operation.
 ITTDG in [13] implements the greedy method in
deciding which test data will be selected as the final test
data. The strategy iterates all uncovered tuples produced by
every interaction or input-output relationship specify by the
user. Iteratively, the strategy will push the visited tuples
into a list referred as test data candidates list. The test data
candidates list then will be extended by adding one
parameter at a time with value that covers the most
uncovered tuples. In case of “tie” situation (that is, more
than one value cover the most uncovered tuples), the
corresponding test data will be duplicated with all the tie
values and all duplicated test data will be pushed into Q.
Once all test data in Q form a complete test data, the test
data which has the highest weight (that is, covers the most
uncovered tuples) among the test data candidates in Q will
be selected as the final test data. The selected test data then
will be pushed into the final test suite and the tuples
covered by the test data are removed from uncovered tuples
list. As the size of Q can potentially grow significantly
during the parameter extension process, the number of test
data candidates in Q subjected to a constant integer value
(M) to avoid the possible out-of-memory error (that is,
when dealing with large number of parameters and values).
It provides seamless integration of all interaction
possibilities. It gives better performance as far as the
generated test size is concerned especially involving
uniform number of parameter values.
 According to the paper [14], author directs
towards early generation of test cases from various design

Nidhi Pare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4718-4723

www.ijcsit.com 4720

phases for Concurrent Systems using UML sequence
diagram. For this the author takes sequence diagram as
input and mapped it to an intermediate concurrent
composite graph (CCG). For extracting the value of input
the graph is been completely traversed by breadth first
search (BFS) and depth first search (DFS) technique. Using
message sequence path criteria to generate the test cases for
concurrent systems a scenario diagram (SD) combines
multiple scenarios by a combined fragment (CF) function.
After getting all the above values an algorithm is proposed
which generate message sequence path criteria (MSPC)
which automatically traverse the concurrent composite
graph and identified the valid parameters & values.

Review Extraction-
 The problem identified with this approach is that
multiple object accessing the same function at same time
cannot be handled .It also not gives any of the priority to
user for high priority test case. Also for the above described
method construction of composite graph is necessary which
seems to restrict us and also increases an overhead. In our
research we are taking the key concern from both the author
and finds that the early generation of test cases will reduces
the test cost & size. By applying all the above methodology
in a proper manner we achieved an excellent result.
Empirical study shows that for pairwise test generation we
achieved 100% coverage criteria and further more results
on various parameters is discussed in later section of thesis.
Thus, by considering the entire above research objective we
have developed a Automated Tool which follow UML
modelling based testing.

IV. PROBLEM IDENTIFICATION

 Software Testing is a time consuming and costly
process in software development life cycle. For reduction in
test cases though MBT testing we must focus on its
problem domain which in NP Complete so solution must
identified while keeping this in mind. Instead of that we are
also facing the problem for Automation of test case design
process which can result in significant reductions in time
and effort, and at the same time it can help in achieving an
increased reliability of the software through increased test
coverage. Automation of this phase may lead to overcome
the above problems and also reduces the human effort in
other ways it also helps in detecting the human intended
errors and logical errors as well. Automation of testing will
not be that much productive in terms of time consuming
and cost, if we have to wait till the end of the SDLC stage
i.e. if we follow the white box testing methodology of
testing. If any errors will be detected in this stage, we have
to go for that part of the code and design document as well.
We have to follow up strict verification of both code and
design document from beginning to short out the error. So
only one solution to this problem is to, start the testing
process from early stage of SDLC i.e. from requirement
specification stage through design phase up to the last phase.
So we focused our study on Model Based testing approach
for both test case generation and test case optimization to
achieve some of the goal, described below:

 To propose some generalized techniques to generate test
cases for object-oriented software’s using UML
Activity Diagram diagrams.

 To propose a generalized technique for optimized test
case generation using UML diagrams.

 To do implementation of the proposed methods and
evaluate their effectiveness.


V. RAITONALE OF WORK

 The immediate purpose of this research is to an
improved model based testing tool using event
consideration for various designs concepts that can help to
provide assurances of reduced overhead of testing. Some
techniques for providing such assurances have been
developed already, but no single technique has provided a
complete solution to the problem. Thus, this thesis will
explore the effectiveness of combining two such techniques
(Unified Modelling & Combinatorial Testing) into a single
tool. The more general purpose of this research is to
improve the available methods of software testing. There
are several major challenges that completely resolved by
our tool with testing modern software. Some are as follows:

 Fully Automated test case generation and execution.
 Formalization and modelling of the software

specifications and implementations, and software
testing process and effects. The reduction in growing
complexity of the modern software-based systems.

 Ability to Generate Test Cases Criteria at the Time of
Design and Requirement Analysis (Early Test Case
Creation saves time & cost).

 Extraction the data to generate test cases, from UML
diagram. Generating the reduced number of test cases
(Test Suite Size).

 Providing the maximum test coverage (100%) with
reduced execution time for testing.

VI. PROPOSED SOLUTION

 This work suggests a novel event model based
testing mechanism using certain design primitives. The
approach aims towards making the efforts reduced for
testers end. Testing always works with the later phases of
the SDLC which leads towards delayed faults and bug
detection. This works also aims towards making this
detection in early phases of development which leads
towards improving the designing and coding part of the
software products. The quality of the software is analysed
using various attributes and testing forces to be one of the
best evaluator. After the NP complete problem is been
solved completely, the generation of reduced pair sets is
feasible but to show the result of research we have to
develop a prototype for the domain. Also our one of the
main objective is early test case generation to reduce cost &
efforts. So to accomplish above mentioned goals this work
proposes new design architecture of event model based
testing mechanism. Implementation of suggested model
makes it possible to automate the testing procedure through
a abstract formal model.

Nidhi Pare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4718-4723

www.ijcsit.com 4721

 The key concern will be on determining which
combination of UML diagrams, and their associated
constraints, may be used to automatically, or semi-
automatically, generate test cases. It has its two main
aspects, First aspect relates to the testable information
contained in a UML model, while the Second aspect relates
to the development of a technique to generate a test suite
from the acquired diagram data. The two major aspects to

the proposed study will be explored in five phase process.
Initially, as part of the first phase, we must determine what
information is been collected by requirement gathering
phase then select a proper design model for test case
extraction. Once taxonomy of this generic information is
established, we must determine which diagrams can provide
the necessary information.

The systems start operating by identifying the testable
information or the requirement specification values as
results. further process after getting the input it initializes
the test set with an empty set & then assigns weights to
them. Once the RA information is clear then it is
categorized according to the model requirements and
specification. In our approach system the approach is using
UML modelling language for determining the values and
results. Now, this model based values are measured using
the event counts. It shows the variation in the current state
of the system. If the system is varying with its state
continuously means it is having large number of the
interaction.
 After the interaction event is detected from the
system then in calculates the complete path metrics for
specifically designed UML diagram such as activity or the
sequence. Path metrics calculation is having a benefit that it
shows the complete flow of the data along with the each
path of the software systems. These extracted statics about
the system is used for generating the test scenarios using the
PICT combinatorial method of generation of test cases.
When the test sets or scenarios are generated then it cloud
be evaluated using various comparing factors. Normally for
the compete test most of the researchers are taken the
coverage criteria as their main factor of evaluation. Also
with the coverage factor the complexity issues and the test
counts are some other important factors. From this method

one by one it identified each test set with most unused
counts. Then we will explore which techniques might be
suitable for the test data extraction process. Once all the
information is been gathered we evaluate the result through
injecting some fault in software & analyse the suggested
approach for these detection of faults. At the end, now
evaluation our technique for effectiveness and efficiency,
against other random test case generation methodologies.
 Perform Tests: Generated concrete tests are
typically executed within a standard automated test
execution environment, which is been developed already.
Moreover, it is possible to execute tests manually – i.e. a
tester runs each generated test on the SUT, records the test
execution results and outputs, and compares them against
the generated expected outputs. Or take another path, when
the tests are executed on the SUT, we find that some tests
pass and some tests fail. The failing tests indicate a
discrepancy between the SUT and model of the system,
offcourse need to be investigated to decide whether the
failure is caused by a bug in the SUT.
 Result: This step analyses the real system which is
to be tested and accepted by user accordingly. The
effectiveness of test cases can be evaluated using a fault
injection technique called mutation analysis of the system.
Mutation testing is a process through which faults are
injected into the system to verify the efficiency of the test
cases.

Nidhi Pare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4718-4723

www.ijcsit.com 4722

VII. EXPECTED BENEFITS
Proposed ASMBT approach have got several

benefits over other UML based combinatorial approach is
an innovative and high-value generating approach
compared to more traditional functional testing methods.
Expected key benefits of ASMBT are listed below:
 Model based test case generations are more efficient

approach to find out the "loop holes" and remove it
 No dependence from the test execution robot, which is

tending to find out the test cases.
 Test case generation is an automated process using this

approach;
 Accurate coverage of functional behaviour of the

system so to get the higher level of accuracy;
 Continuous maintenance of the requirement coverage

matrix;
 Well defined action words explained in UML model

operations of the system;
 Well defined test scripts, useful for further propose;

VIII. CONCLUSION
 The thought of UML-model based testing utilizing
event commitment is to utilize an express abstract model of
a SUT and its environment to consequently infer tests for
the SUT: the behaviour of the model of the SUT is
translated as the expected behaviour of the SUT. The
technology of proposed testing has developed to the point
where large-scale deployments of this technology are
getting to be ordinary. The requirements for achievement,
for example, capability of the test team, integrated tool
chain availability and routines, are currently recognized,
and an extensive variety of commercial and open-source
tools are accessible. Despite the fact that it won't tackle all
testing issues, it is a vital and helpful strategy, which brings
critical advance over the condition of the practice for
functional software testing viability, and can build
productivity and enhance functional coverage.

REFERENCES

[1] Olli-Pekka Puolitaival "Model based testing tools" published in
journal of VTT Technical Research Centre Of Finland

[2] Mark Utting "Position Paper: Model-Based Testing
"http://secure.ucd.ie/products/opensource/ESCJava2.

[3] Ibrahim K. El-Far and James A. Whittaker" Model-based Software
Testing " Encyclopedia on Software Engineering (edited by J.J.
Marciniak), Wiley, 2011

[4] Ren´ee C. Bryce, Ajitha Rajan, Mats P.E. Heimdahl " Interaction
Testing in Model-Based Development: Effect on Model-Coverage"
ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE
(APSEC'06)

[5] H. Y. Ong and Kamal Z. Zamli " Development of interaction test
suite generation strategy with input- output mapping supports"
Scientific Research and Essays Vol. 6(16), pp. 3418-3430, 19
August, 2011

[6] Cle´mentine Nebut, Franck Fleurey, Yves Le Traon, Member, IEEE,
and Jean-Marc Je´ze´ quel, Member, IEEE "Automatic Test
Generation: A Use Case Driven Approach " IEEE Transactions On
Software Engineering, Vol. 32, No. 3, March 2006

[7] A.V.K.Shanthi, Dr.G.Mohankumar" Automated Test Cases
Generation For Object Oriented Software " Indian Journal Of
Computer Science And Engineering (Ijcse) 2011.

[8] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed Hashem and
Mohamed F.Tolba " Test Case Generation and Test Data Extraction
Techniques " International Journal of Electrical & Computer Sciences
IJECS-IJENS Vol: 11 No: 03 2011

[9] Baikuntha Narayan Biswal, Pragyan Nanda, Durga Prasad
Mohapatra" A Novel Approach for Scenario-Based Test Case
Generation " International Conference on Information Technology
IEEE 2008

[10] Ren´ee C Bryce, Member, IEEE, Sreedevi Sampath, Member, IEEE,
and Atif M Memon, Member, IEEE " Developing a Single Model and
Test Prioritization Strategies for Event-Driven Software " published
in IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 37, NO. 1, JAN/FEB 2011

[11] Santosh Kumar Swain, Durga Prasad Mohapatra" Test Case
Generation from Behavioral UML Models" International Journal of
Computer Applications (0975 – 8887) Volume 6– No.8, September
2010

[12] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib Mall" Test
Case Generation Based on State
and Activity Models " Journal of Object Technology Published by
ETH Zurich, Chair of Software Engineering, ©JOT 2010

[13] Rozmie R. Othman1 and Kamal Z. Zamli " ITTDG: Integrated T-
way test data generation strategy for interaction testing " Scientific
Research and Essays Vol. 6(17), pp. 3638-3648, 26 August, 2011
Available online at http://www.academicjournals.org/SRE ISSN
1992-2248 ©2011 Academic Journals

[14] Monalisha Khandai, Arup Abhinna Acharya, Durga Prasad
Mohapatra" A Novel Approach of Test Case Generation for
Concurrent Systems Using UML " IEEE 2011

[15] Elder M. Rodrigues, Flavio M. Oliveira, Maicon Bernardino "
Evaluating Capture and Replay and Model-based Performance
Testing Tools: An Empirical Comparison " ACM 2014[Base1]

[16] Florian Häser, Michael Felderer, Ruth Breu " Software Paradigms,
Assessment Types and Non-Functional Requirements in Model-
Based Integration Testing: A Systematic Literature Review " ACM
2014[Base 2]

Nidhi Pare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4718-4723

www.ijcsit.com 4723

